Given a non negative integer number num. For every numbers i in the range 0 ≤ i ≤ num calculate the number of 1's in their binary representation and return them as an array.
Example:
For num = 5 you should return [0,1,1,2,1,2].
Follow up:
It is very easy to come up with a solution with run time O(n*sizeof(integer)). But can you do it in linear time O(n) /possibly in a single pass?
Space complexity should be O(n).
Can you do it like a boss? Do it without using any builtin function like __builtin_popcount in c++ or in any other language.
解题思路:
这个题目类似89. Gray Code,找规律
0 - 0
1 - 1
2 - 1
3 - 2
4 - 1
5 - 2
6 - 2
7 - 3
8 - 1
[2^(i-1),2^i-1]是由[0,2^(i-1)-1]数组+1得到的。例如上面的[4,7]的值是由[0,3]+1得到的。
class Solution { public: vector<int> countBits(int num) { vector<int>res(num+1,0); int base=1; int k=1; while(k<=num){ for(int j=0;j<base&&k<=num;j++) res[k++]=res[j]+1; base<<=1; } return res; } }; |
没有评论:
发表评论